Chemical inhibitors of monogalactosyldiacylglycerol synthases in Arabidopsis thaliana (2024)

References

  1. Gounaris, K. & Barber, J. Monogalactosyldiacylglycerol - the most abundant polar lipid in nature. Trends Biochem. Sci. 8, 378–381 (1983).

    Article CAS Google Scholar

  2. Andersson, L. et al. Hydrolysis of galactolipids by human pancreatic lipolytic enzymes and duodenal contents. J. Lipid Res. 36, 1392–1400 (1995).

    CAS PubMed Google Scholar

  3. Härtel, H., Dormann, P. & Benning, C. DGD1-independent biosynthesis of extraplastidic galactolipids after phosphate deprivation in Arabidopsis. Proc. Natl. Acad. Sci. USA 97, 10649–10654 (2000).

    Article Google Scholar

  4. Van Mooy, B.A.S. et al. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458, 69–72 (2009).

    Article CAS Google Scholar

  5. Tjellstrom, H., Andersson, M.X., Larsson, K.E. & Sandelius, A.S. Membrane phospholipids as a phosphate reserve: the dynamic nature of phospholipid-to-digalactosyl diacylglycerol exchange in higher plants. Plant Cell Environ. 31, 1388–1398 (2008).

    Article Google Scholar

  6. Andersson, M.X., Larsson, K.E., Tjellström, H., Liljenberg, C. & Sandelius, A.S. The plasma membrane and the tonoplast as major targets for phospholipid- to-glycolipid replacement and stimulation of phospholipases in the plasma membrane. J. Biol. Chem. 280, 27578–27586 (2005).

    Article CAS Google Scholar

  7. Jouhet, J. et al. Phosphate deprivation induces transfer of DGDG galactolipid from chloroplast to mitochondria. J. Cell Biol. 167, 863–874 (2004).

    Article CAS Google Scholar

  8. Jouhet, J., Marechal, E. & Block, M.A. Glycerolipid transfer for the building of membranes in plant cells. Prog. Lipid Res. 46, 37–55 (2007).

    Article CAS Google Scholar

  9. Benning, C. A role for lipid trafficking in chloroplast biogenesis. Prog. Lipid Res. 47, 381–389 (2008).

    Article CAS Google Scholar

  10. Benning, C. Mechanisms of lipid transport involved in organelle biogenesis in plant cells. Annu. Rev. Cell Dev. Biol. 25, 71–91 (2009).

    Article CAS Google Scholar

  11. Stroebel, D., Choquet, Y., Popot, J.L. & Picot, D. An atypical haem in the cytochrome b(6)f complex. Nature 426, 413–418 (2003).

    Article CAS Google Scholar

  12. Loll, B., Kern, J., Saenger, W., Zouni, A. & Biesiadka, J. Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438, 1040–1044 (2005).

    Article CAS Google Scholar

  13. Aronsson, H. et al. Monogalactosyldiacylglycerol deficiency in Arabidopsis affects pigment composition in the prolamellar body and impairs thylakoid membrane energization and photoprotection in leaves. Plant Physiol. 148, 580–592 (2008).

    Article CAS Google Scholar

  14. Schleiff, E., Soll, J., Kuchler, M., Kuhlbrandt, W. & Harrer, R. Characterization of the translocon of the outer envelope of chloroplasts. J. Cell Biol. 160, 541–551 (2003).

    Article CAS Google Scholar

  15. Chen, L.J. & Li, H.M. A mutant deficient in the plastid lipid DGD is defective in protein import into chloroplasts. Plant J. 16, 33–39 (1998).

    Article Google Scholar

  16. Kobayashi, K., Kondo, M., f*ckuda, H., Nishimura, M. & Ohta, H. Galactolipid synthesis in chloroplast inner envelope is essential for proper thylakoid biogenesis, photosynthesis, and embryogenesis. Proc. Natl. Acad. Sci. USA 104, 17216–17221 (2007).

    Article CAS Google Scholar

  17. Dormann, P. & Benning, C. Galactolipids rule in seed plants. Trends Plant Sci. 7, 112–118 (2002).

    Article CAS Google Scholar

  18. Douce, R. Site of biosynthesis of galactolipids in spinach-chloroplasts. Science 183, 852–853 (1974).

    Article CAS Google Scholar

  19. Joyard, J. et al. The biochemical machinery of plastid envelope membranes. Plant Physiol. 118, 715–723 (1998).

    Article CAS Google Scholar

  20. Browse, J., Warwick, N., Somerville, C.R. & Slack, C.R. Fluxes through the Prokaryotic and Eukaryotic Pathways of Lipid-Synthesis in the 16–3 Plant Arabidopsis-Thaliana. Biochem. J. 235, 25–31 (1986).

    Article CAS Google Scholar

  21. Xu, C., Yu, B., Cornish, A.J., Froehlich, J.E. & Benning, C. Phosphatidylglycerol biosynthesis in chloroplasts of Arabidopsis mutants deficient in acyl-ACP glycerol-3-phosphate acyltransferase. Plant J. 47, 296–309 (2006).

    Article CAS Google Scholar

  22. Nakamura, Y., Tsuchiya, M. & Ohta, H. Plastidic phosphatidic acid phosphatases identified in a distinct subfamily of lipid phosphate phosphatases with prokaryotic origin. J. Biol. Chem. 282, 29013–29021 (2007).

    Article CAS Google Scholar

  23. Xu, C., Fan, J., Froehlich, J.E., Awai, K. & Benning, C. Mutation of the TGD1 chloroplast envelope protein affects phosphatidate metabolism in Arabidopsis. Plant Cell 17, 3094–3110 (2005).

    Article CAS Google Scholar

  24. Lu, B. & Benning, C. A 25-amino acid sequence of the Arabidopsis TGD2 protein is sufficient for specific binding of phosphatidic acid. J. Biol. Chem. 284, 17420–17427 (2009).

    Article CAS Google Scholar

  25. Lu, B., Xu, C.C., Awai, K., Jones, A.D. & Benning, C. A small ATPase protein of Arabidopsis, TGD3, involved in chloroplast lipid import. J. Biol. Chem. 282, 35945–35953 (2007).

    Article CAS Google Scholar

  26. Nakamura, Y. et al. Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation. Proc. Natl. Acad. Sci. USA 106, 20978–20983 (2009).

    Article CAS Google Scholar

  27. Jouhet, J., Marechal, E., Bligny, R., Joyard, J. & Block, M.A. Transient increase of phosphatidylcholine in plant cells in response to phosphate deprivation. FEBS Lett. 544, 63–68 (2003).

    Article CAS Google Scholar

  28. Misson, J. et al. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc. Natl. Acad. Sci. USA 102, 11934–11939 (2005).

    Article CAS Google Scholar

  29. Morcuende, R. et al. Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ. 30, 85–112 (2007).

    Article CAS Google Scholar

  30. Li, M., Qin, C.B., Welti, R. & Wang, X.M. Double knockouts of phospholipases D zeta 1 and D zeta 2 in Arabidopsis affect root elongation during phosphate-limited growth but do not affect root hair patterning. Plant Physiol. 140, 761–770 (2006).

    Article CAS Google Scholar

  31. Li, M., Welti, R. & Wang, X.M. Quantitative profiling of Arabidopsis polar glycerolipids in response to phosphorus starvation. Roles of Phospholipases D zeta 1 and D zeta 2 in phosphatidylcholine hydrolysis and digalactosyldiacylglycerol accumulation in phosphorus-starved plants. Plant Physiol. 142, 750–761 (2006).

    Article CAS Google Scholar

  32. Cruz-Ramírez, A., Oropeza-Aburto, A., Razo-Hernandez, F., Ramirez-Chavez, E. & Herrera-Estrella, L. Phospholipase DZ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots. Proc. Natl. Acad. Sci. USA 103, 6765–6770 (2006).

    Article Google Scholar

  33. Gaude, N., Nakamura, Y., Scheible, W.R., Ohta, H. & Dormann, P. Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. Plant J. 56, 28–39 (2008).

    Article CAS Google Scholar

  34. Nakamura, Y. et al. A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis. J. Biol. Chem. 280, 7469–7476 (2005).

    Article CAS Google Scholar

  35. Awai, K. et al. Two types of MGDG synthase genes, found widely in both 16: 3 and 18: 3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 98, 10960–10965 (2001).

    Article CAS Google Scholar

  36. Heemskerk, J.W.M. et al. Localization of galactolipid:galactolipid galactosyltransferase and acyltransferase in outer envelope membrane of spinach chloroplasts. Biochim. Biophys. Acta 877, 281–289 (1986).

    Article CAS Google Scholar

  37. Moellering, E.R., Muthan, B. & Benning, C. Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. Science 330, 226–228 (2010).

    Article CAS Google Scholar

  38. Padham, A.K. et al. Characterization of a plastid triacylglycerol lipase from Arabidopsis. Plant Physiol. 143, 1372–1384 (2007).

    Article CAS Google Scholar

  39. Youssef, A. et al. Plant lipid-associated fibrillin proteins condition jasmonate production under photosynthetic stress. Plant J. 61, 436–445 (2010).

    Article CAS Google Scholar

  40. Andreou, A., Brodhun, F. & Feussner, I. Biosynthesis of oxylipins in non-mammals. Prog. Lipid Res. 48, 148–170 (2009).

    Article CAS Google Scholar

  41. Jarvis, P. et al. Galactolipid deficiency and abnormal chloroplast development in the Arabidopsis MGD synthase 1 mutant. Proc. Natl. Acad. Sci. USA 97, 8175–8179 (2000).

    Article CAS Google Scholar

  42. Benning, C. & Ohta, H. Three enzyme systems for galactoglycerolipid biosynthesis are coordinately regulated in plants. J. Biol. Chem. 280, 2397–2400 (2005).

    Article CAS Google Scholar

  43. Kobayashi, K., Awai, K., Takamiya, K. & Ohta, H. Arabidopsis type B monogalactosyldiacylglycerol synthase genes are expressed during pollen tube growth and induced by phosphate starvation. Plant Physiol. 134, 640–648 (2004).

    Article CAS Google Scholar

  44. Kobayashi, K., Nakamura, Y. & Ohta, H. Type A and type B monogalactosyldiacylglycerol synthases are spatially and functionally separated in the plastids of higher plants. Plant Physiol. Biochem. 47, 518–525 (2009).

    Article CAS Google Scholar

  45. Kobayashi, K. et al. Type-B monogalactosyldiacylglycerol synthases are involved in phosphate starvation-induced lipid remodeling, and are crucial for low-phosphate adaptation. Plant J. 57, 322–331 (2009).

    Article CAS Google Scholar

  46. Nishiyama, Y. et al. Refolding from denatured inclusion bodies, purification to hom*ogeneity and simplified assay of MGDG synthases from land plants. Protein Expr. Purif. 31, 79–87 (2003).

    Article CAS Google Scholar

  47. Botté, C. et al. Molecular modeling and site-directed mutagenesis of plant chloroplast monogalactosyldiacylglycerol synthase reveal critical residues for activity. J. Biol. Chem. 280, 34691–34701 (2005).

    Article Google Scholar

  48. Dubots, E. et al. Activation of the chloroplast monogalactosyldiacylglycerol synthase, MGD1, by phosphatidic acid and phosphatidylglycerol. J. Biol. Chem. 285, 6003–6011 (2010).

    Article CAS Google Scholar

  49. Nakamura, Y., Kobayashi, K. & Ohta, H. Activation of galactolipid biosynthesis in development of pistils and pollen tubes. Plant Physiol. Biochem. 47, 535–539 (2009).

    Article CAS Google Scholar

  50. Hicks, G.R. & Raikhel, N.V. Opportunities and challenges in plant chemical biology. Nat. Chem. Biol. 5, 268–272 (2009).

    Article CAS Google Scholar

Download references

Chemical inhibitors of monogalactosyldiacylglycerol synthases in Arabidopsis thaliana (2024)

References

Top Articles
Latest Posts
Article information

Author: Aron Pacocha

Last Updated:

Views: 6423

Rating: 4.8 / 5 (68 voted)

Reviews: 83% of readers found this page helpful

Author information

Name: Aron Pacocha

Birthday: 1999-08-12

Address: 3808 Moen Corner, Gorczanyport, FL 67364-2074

Phone: +393457723392

Job: Retail Consultant

Hobby: Jewelry making, Cooking, Gaming, Reading, Juggling, Cabaret, Origami

Introduction: My name is Aron Pacocha, I am a happy, tasty, innocent, proud, talented, courageous, magnificent person who loves writing and wants to share my knowledge and understanding with you.